Q3297308 (Q3297308): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in en: Setting new description)
(‎Created claim: summary (P836): LIBlife’s goal is to develop a state of health (SOH) diagnostics for lithium-ion battery systems based on physicochemical models. The main result is validated software algorithms that, based on measurement data (voltage, current, temperature) of battery cells during real-time operation, estimate the state of health (capacity and performance) and the state of charge in real time and predict the residual lifetime. The algorithms are demonstrated o...)
Property / summary
 
LIBlife’s goal is to develop a state of health (SOH) diagnostics for lithium-ion battery systems based on physicochemical models. The main result is validated software algorithms that, based on measurement data (voltage, current, temperature) of battery cells during real-time operation, estimate the state of health (capacity and performance) and the state of charge in real time and predict the residual lifetime. The algorithms are demonstrated on the basis of a photovoltaic home storage battery of the participating SMEs. The transferability to electric vehicle batteries is investigated. The development and validation takes place in an interdisciplinary combination of chemical and mechanical aging models, experimental aging tests, material analysis of the cells, and innovative algorithms for state assessment. The equipment offers the Enerlab 4.0, a FH-Invest measure of the applicants. (English)
Property / summary: LIBlife’s goal is to develop a state of health (SOH) diagnostics for lithium-ion battery systems based on physicochemical models. The main result is validated software algorithms that, based on measurement data (voltage, current, temperature) of battery cells during real-time operation, estimate the state of health (capacity and performance) and the state of charge in real time and predict the residual lifetime. The algorithms are demonstrated on the basis of a photovoltaic home storage battery of the participating SMEs. The transferability to electric vehicle batteries is investigated. The development and validation takes place in an interdisciplinary combination of chemical and mechanical aging models, experimental aging tests, material analysis of the cells, and innovative algorithms for state assessment. The equipment offers the Enerlab 4.0, a FH-Invest measure of the applicants. (English) / rank
 
Normal rank
Property / summary: LIBlife’s goal is to develop a state of health (SOH) diagnostics for lithium-ion battery systems based on physicochemical models. The main result is validated software algorithms that, based on measurement data (voltage, current, temperature) of battery cells during real-time operation, estimate the state of health (capacity and performance) and the state of charge in real time and predict the residual lifetime. The algorithms are demonstrated on the basis of a photovoltaic home storage battery of the participating SMEs. The transferability to electric vehicle batteries is investigated. The development and validation takes place in an interdisciplinary combination of chemical and mechanical aging models, experimental aging tests, material analysis of the cells, and innovative algorithms for state assessment. The equipment offers the Enerlab 4.0, a FH-Invest measure of the applicants. (English) / qualifier
 
point in time: 24 October 2021
Timestamp+2021-10-24T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 16:02, 24 October 2021

Project Q3297308 in Germany
Language Label Description Also known as
English
No label defined
Project Q3297308 in Germany

    Statements

    0 references
    214,925.0 Euro
    0 references
    429,850.0 Euro
    0 references
    50.0 percent
    0 references
    25 April 2018
    0 references
    30 June 2021
    0 references
    Hochschule Offenburg - Hochschule für Technik, Wirtschaft und Medien
    0 references
    Ziel von LIBlife ist die Entwicklung einer Diagnostik für den Gesundheitszustand (state of health, SOH) von Lithium-Ionen-Batteriesystemen auf Basis physikalisch-chemischer Modelle. Hauptergebnis sind validierte Softwarealgorithmen, die ausgehend von Messdaten (Spannung, Strom, Temperatur) von Batteriezellen während des realen Betriebs den Gesundheitszustand (Kapazität und Leistungsfähigkeit) und den Ladezustand in Echtzeit schätzen sowie die Restlebensdauer vorhersagen. Die Algorithmen werden anhand einer Photovoltaik-Heimspeicherbatterie der beteiligten KMUs demonstriert. Die Übertragbarkeit auf Elektrofahrzeugbatterien wird untersucht. Die Entwicklung und Validierung erfolgt in einer interdisziplinären Kombination aus chemischen und mechanischen Alterungsmodellen, experimenteller Alterungstests, Werkstoffanalytik der Zellen, und innovativen Algorithmen für die Zustandsschätzung. Die apparative Ausstattung bietet das Enerlab 4.0, eine FH-Invest Maßnahme der Antragsteller. (German)
    0 references
    LIBlife’s goal is to develop a state of health (SOH) diagnostics for lithium-ion battery systems based on physicochemical models. The main result is validated software algorithms that, based on measurement data (voltage, current, temperature) of battery cells during real-time operation, estimate the state of health (capacity and performance) and the state of charge in real time and predict the residual lifetime. The algorithms are demonstrated on the basis of a photovoltaic home storage battery of the participating SMEs. The transferability to electric vehicle batteries is investigated. The development and validation takes place in an interdisciplinary combination of chemical and mechanical aging models, experimental aging tests, material analysis of the cells, and innovative algorithms for state assessment. The equipment offers the Enerlab 4.0, a FH-Invest measure of the applicants. (English)
    24 October 2021
    0 references
    Offenburg
    0 references

    Identifiers

    DE_TEMPORARY_87
    0 references