Artificial intelligence (AI) streamlining users’ conversion to paying customers (Q10117): Difference between revisions
Jump to navigation
Jump to search
(Created claim: summary (P836): The project aims at research and development of technology to improve the efficiency of investment in customer acquisition, based on the most recent knowledge of science and research in optimising genetic algorithms in combination with physical learning using deep neurolearning networks. The project will result in a system that, over a long period of time before the customer switching to the customer, will be able to predict the likelihood of th...) |
(Removed claims) |
||
Property / instance of | |||
Property / instance of: Kohesio project / rank | |||
Property / financed by | |||
Property / financed by: European Union / rank | |||
Property / financed by | |||
Property / financed by: Directorate-General for Regional and Urban Policy / rank | |||
Revision as of 16:23, 3 March 2020
Project in Czech Republic financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | Artificial intelligence (AI) streamlining users’ conversion to paying customers |
Project in Czech Republic financed by DG Regio |
Statements
8,853,085.8 Czech koruna
0 references
18,642,000.0 Czech koruna
0 references
47.49 percent
0 references
1 January 2016
0 references
29 September 2019
0 references
Webnode CZ s.r.o.
0 references
60300
0 references
Cílem projektu je výzkum a vývoj technologie pro zvyšování efektivity investic do získávání zákazníků, která bude vycházet z nejnovějších poznatků vědy a výzkumu v oblasti optimalizace genetickými algoritmy v kombinaci se strojovým učením pomocí hlubokých neuronových sítí (deep learning). Výsledkem projektu bude systém, který v době dlouho před konverzí uživatele na platícího zákazníka bude schopen predikovat pravděpodobnost, s jakou se časem stane platícím zákazníkem. a. (Czech)
0 references
The project aims at research and development of technology to improve the efficiency of investment in customer acquisition, based on the most recent knowledge of science and research in optimising genetic algorithms in combination with physical learning using deep neurolearning networks. The project will result in a system that, over a long period of time before the customer switching to the customer, will be able to predict the likelihood of the time it takes to pay a client. a. (English)
0 references
Identifiers
CZ.01.1.02/0.0/0.0/15_018/0004788
0 references