FUSING NANOMECANICA, OPTOMECANICA AND PLASMONICA FOR DETECTION OF FUSION PROTEINS SECRETED BY TUMORS IN THEIR EARLY STAGES (Q3189279): Difference between revisions
Jump to navigation
Jump to search
(Removed claim: summary (P836): SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEI...) |
(Created claim: summary (P836): SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEINS...) |
||||||||||||||
Property / summary | |||||||||||||||
SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEINS, SOME AT CONCENTRATIONS 12 ORDERS OF GREATER MAGNITUDE. THE PROPOSAL AIMS TO DEVELOP A TECHNOLOGY FOR THE IDENTIFICATION AND QUANTIFICATION IN A WIDE RANGE OF SPECIFIC TUMOR PROTEINS IN BLOOD SAMPLES. THE TECHNOLOGICAL BASIS OF THE PROPOSAL IS BASED ON EXPLOITING THE PHYSICAL PHENOMENA THAT EMERGE IN THE CONVERGENCE OF THE PHYSICS OF OPTIC CAVITIES, PLASMONICA AND NANOMECANICA. IN PARTICULAR, BIOMARKING PROTEINS SHALL BE SPECIFICALLY DETECTED BY CAPTURE AND DETECTION ANTIBODIES WHICH RECOGNISE TWO DIFFERENT EPITOPES (PARTICULARLY RECOGNISABLE PORTIONS). EACH PROTEIN WILL BECOME AN IMMUNOCOMPLEX WITH TWO ANTIBODIES. ONE OF THEM WILL BE ATTACHED TO A METAL NANOPARTICULA, WHILE THE OTHER WILL BE ANCHORED TO THE SURFACE OF AN OPTOMECANIC MICROTAMBOR SENSOR. THE FUNCTION OF THE NANOPARTICULA IS TWOFOLD: INCREASES THE MASS OF THE IMMUNOCOMPLEX AND EXHIBITS LOCALISED PLASMON RESONANCES. THE CAPTURE OF AN IMMUNOCOMPLEX ON THE SURFACE OF THE OPTOMECANICO SENSOR WILL HAVE AS AN EFFECT THE COUPLING BETWEEN THE MODES OF THE OPTIC MICROCAVITY, THE MECHANICAL RESONANCES AND THE PLASMON RESONANCES. THE EXPECTED RESULT IS THE OBTAINING OF VERY SPECIFIC SIGNALS FOR EACH BIOMARKER, AN EXTREME SENSITIVITY AND A LIMIT OF DETECTION NEXT TO THE FUNDAMENTAL LIMITS. THE DEVICES SHALL BE ASSEMBLED INTO CHIPS COMPRISING TWO-DIMENSIONAL ARRAYS OF BETWEEN 100 AND 1000 SENSORS CAPABLE OF DETECTING UP TO 100 DIFFERENT PROTEINS AT SUB-FEMTOMOLARES CONCENTRATIONS. TECHNOLOGY WILL BE TESTED ON BLOOD SAMPLES FROM PATIENTS WITH NON-SMALL CELL PULMON CANCER (NSCLC). THIS TYPE OF CANCER ACCOUNTS FOR ALMOST 80 % OF LUNG CANCER CASES AND EXHIBITS AN AVERAGE SURVIVAL OF LESS THAN A YEAR AFTER DIAGNOSIS. IN PARTICULAR, BIOMARKING PROTEINS DERIVED FROM FUSION GENES WILL BE SOUGHT, AS THESE PROTEINS ARE INEQUITABLE SIGNATURES OF THE APPEARANCE AND DEVELOPMENT OF MOST CANCERS. THE DETECTION OF THESE PROTEINS IN A BLOOD ANALYSIS WILL CONTRIBUTE TO THE DETECTION OF THIS DISEASE FROM VERY EARLY STAGES WHEN THERAPIES ARE VERY EFFICIENT. (English) | |||||||||||||||
Property / summary: SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEINS, SOME AT CONCENTRATIONS 12 ORDERS OF GREATER MAGNITUDE. THE PROPOSAL AIMS TO DEVELOP A TECHNOLOGY FOR THE IDENTIFICATION AND QUANTIFICATION IN A WIDE RANGE OF SPECIFIC TUMOR PROTEINS IN BLOOD SAMPLES. THE TECHNOLOGICAL BASIS OF THE PROPOSAL IS BASED ON EXPLOITING THE PHYSICAL PHENOMENA THAT EMERGE IN THE CONVERGENCE OF THE PHYSICS OF OPTIC CAVITIES, PLASMONICA AND NANOMECANICA. IN PARTICULAR, BIOMARKING PROTEINS SHALL BE SPECIFICALLY DETECTED BY CAPTURE AND DETECTION ANTIBODIES WHICH RECOGNISE TWO DIFFERENT EPITOPES (PARTICULARLY RECOGNISABLE PORTIONS). EACH PROTEIN WILL BECOME AN IMMUNOCOMPLEX WITH TWO ANTIBODIES. ONE OF THEM WILL BE ATTACHED TO A METAL NANOPARTICULA, WHILE THE OTHER WILL BE ANCHORED TO THE SURFACE OF AN OPTOMECANIC MICROTAMBOR SENSOR. THE FUNCTION OF THE NANOPARTICULA IS TWOFOLD: INCREASES THE MASS OF THE IMMUNOCOMPLEX AND EXHIBITS LOCALISED PLASMON RESONANCES. THE CAPTURE OF AN IMMUNOCOMPLEX ON THE SURFACE OF THE OPTOMECANICO SENSOR WILL HAVE AS AN EFFECT THE COUPLING BETWEEN THE MODES OF THE OPTIC MICROCAVITY, THE MECHANICAL RESONANCES AND THE PLASMON RESONANCES. THE EXPECTED RESULT IS THE OBTAINING OF VERY SPECIFIC SIGNALS FOR EACH BIOMARKER, AN EXTREME SENSITIVITY AND A LIMIT OF DETECTION NEXT TO THE FUNDAMENTAL LIMITS. THE DEVICES SHALL BE ASSEMBLED INTO CHIPS COMPRISING TWO-DIMENSIONAL ARRAYS OF BETWEEN 100 AND 1000 SENSORS CAPABLE OF DETECTING UP TO 100 DIFFERENT PROTEINS AT SUB-FEMTOMOLARES CONCENTRATIONS. TECHNOLOGY WILL BE TESTED ON BLOOD SAMPLES FROM PATIENTS WITH NON-SMALL CELL PULMON CANCER (NSCLC). THIS TYPE OF CANCER ACCOUNTS FOR ALMOST 80 % OF LUNG CANCER CASES AND EXHIBITS AN AVERAGE SURVIVAL OF LESS THAN A YEAR AFTER DIAGNOSIS. IN PARTICULAR, BIOMARKING PROTEINS DERIVED FROM FUSION GENES WILL BE SOUGHT, AS THESE PROTEINS ARE INEQUITABLE SIGNATURES OF THE APPEARANCE AND DEVELOPMENT OF MOST CANCERS. THE DETECTION OF THESE PROTEINS IN A BLOOD ANALYSIS WILL CONTRIBUTE TO THE DETECTION OF THIS DISEASE FROM VERY EARLY STAGES WHEN THERAPIES ARE VERY EFFICIENT. (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEINS, SOME AT CONCENTRATIONS 12 ORDERS OF GREATER MAGNITUDE. THE PROPOSAL AIMS TO DEVELOP A TECHNOLOGY FOR THE IDENTIFICATION AND QUANTIFICATION IN A WIDE RANGE OF SPECIFIC TUMOR PROTEINS IN BLOOD SAMPLES. THE TECHNOLOGICAL BASIS OF THE PROPOSAL IS BASED ON EXPLOITING THE PHYSICAL PHENOMENA THAT EMERGE IN THE CONVERGENCE OF THE PHYSICS OF OPTIC CAVITIES, PLASMONICA AND NANOMECANICA. IN PARTICULAR, BIOMARKING PROTEINS SHALL BE SPECIFICALLY DETECTED BY CAPTURE AND DETECTION ANTIBODIES WHICH RECOGNISE TWO DIFFERENT EPITOPES (PARTICULARLY RECOGNISABLE PORTIONS). EACH PROTEIN WILL BECOME AN IMMUNOCOMPLEX WITH TWO ANTIBODIES. ONE OF THEM WILL BE ATTACHED TO A METAL NANOPARTICULA, WHILE THE OTHER WILL BE ANCHORED TO THE SURFACE OF AN OPTOMECANIC MICROTAMBOR SENSOR. THE FUNCTION OF THE NANOPARTICULA IS TWOFOLD: INCREASES THE MASS OF THE IMMUNOCOMPLEX AND EXHIBITS LOCALISED PLASMON RESONANCES. THE CAPTURE OF AN IMMUNOCOMPLEX ON THE SURFACE OF THE OPTOMECANICO SENSOR WILL HAVE AS AN EFFECT THE COUPLING BETWEEN THE MODES OF THE OPTIC MICROCAVITY, THE MECHANICAL RESONANCES AND THE PLASMON RESONANCES. THE EXPECTED RESULT IS THE OBTAINING OF VERY SPECIFIC SIGNALS FOR EACH BIOMARKER, AN EXTREME SENSITIVITY AND A LIMIT OF DETECTION NEXT TO THE FUNDAMENTAL LIMITS. THE DEVICES SHALL BE ASSEMBLED INTO CHIPS COMPRISING TWO-DIMENSIONAL ARRAYS OF BETWEEN 100 AND 1000 SENSORS CAPABLE OF DETECTING UP TO 100 DIFFERENT PROTEINS AT SUB-FEMTOMOLARES CONCENTRATIONS. TECHNOLOGY WILL BE TESTED ON BLOOD SAMPLES FROM PATIENTS WITH NON-SMALL CELL PULMON CANCER (NSCLC). THIS TYPE OF CANCER ACCOUNTS FOR ALMOST 80 % OF LUNG CANCER CASES AND EXHIBITS AN AVERAGE SURVIVAL OF LESS THAN A YEAR AFTER DIAGNOSIS. IN PARTICULAR, BIOMARKING PROTEINS DERIVED FROM FUSION GENES WILL BE SOUGHT, AS THESE PROTEINS ARE INEQUITABLE SIGNATURES OF THE APPEARANCE AND DEVELOPMENT OF MOST CANCERS. THE DETECTION OF THESE PROTEINS IN A BLOOD ANALYSIS WILL CONTRIBUTE TO THE DETECTION OF THIS DISEASE FROM VERY EARLY STAGES WHEN THERAPIES ARE VERY EFFICIENT. (English) / qualifier | |||||||||||||||
point in time: 13 October 2021
|
Revision as of 22:04, 12 October 2021
Project Q3189279 in Spain
Language | Label | Description | Also known as |
---|---|---|---|
English | FUSING NANOMECANICA, OPTOMECANICA AND PLASMONICA FOR DETECTION OF FUSION PROTEINS SECRETED BY TUMORS IN THEIR EARLY STAGES |
Project Q3189279 in Spain |
Statements
133,100.0 Euro
0 references
266,200.0 Euro
0 references
50.0 percent
0 references
1 January 2016
0 references
31 December 2018
0 references
AGENCIA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
0 references
28903
0 references
LOS TUMORES SOLIDOS SECRETAN PROTEINAS ESPECIFICAS AL TORRENTE SANGUINEO DESDE EL INICIO DE LA ENFERMEDAD. LA DETECCION DE ESTAS PROTEINAS PERMITIRIA LA DETECCION PRECOZ DEL CANCER Y SUPONDRIA UNA VERDADERA REVOLUCION EN SU TRATAMIENTO. SIN EMBARGO, NO EXISTE AUN UNA TECNOLOGIA CAPAZ DE DETERMINAR LA PRESENCIA DE ESTAS PROTEINAS EN EL PLASMA SANGUINEO. ESTO ES DEBIDO A LAS CONCENTRACIONES INFIMAS A LAS QUE SE ENCUENTRAN, Y A QUE COEXISTEN CON MAS DE 10.000 PROTEINAS DIFERENTES, ALGUNAS DE ELLAS A CONCENTRACIONES 12 ORDENES DE MAGNITUD MAYOR. LA PROPUESTA TIENE COMO OBJETIVO DESARROLLAR UNA TECNOLOGIA PARA LA IDENTIFICACION Y CUANTIFICACION EN UN AMPLIO RANGO DINAMICO DE PROTEINAS ESPECIFICAS DE TUMOR EN MUESTRAS SANGUINEAS. LA BASE TECNOLOGICA DE LA PROPUESTA SE BASA EN EXPLOTAR LOS FENOMENOS FISICOS QUE EMERGEN EN LA CONVERGENCIA DE LA FISICA DE CAVIDADES OPTICAS, PLASMONICA Y NANOMECANICA. EN PARTICULAR, LAS PROTEINAS BIOMARCADORAS SERAN ESPECIFICAMENTE DETECTADAS POR ANTICUERPOS DE CAPTURA Y DETECCION LOS CUALES RECONOCEN DOS EPITOPOS (PORCIONES ESPECIFICAMENTE RECONOCIBLES) DIFERENTES DE LAS MISMAS. CADA PROTEINA QUEDARA ASI FORMANDO UN INMUNOCOMPLEJO CON DOS ANTICUERPOS. UNO DE ELLOS ESTARA ADHERIDO A UNA NANOPARTICULA METALICA, MIENTRAS QUE EL OTRO ESTARA ANCLADO A LA SUPERFICIE DE UN SENSOR OPTOMECANICO EN FORMA DE MICROTAMBOR. LA FUNCION DE LA NANOPARTICULA ES DOBLE: INCREMENTA LA MASA DEL INMUNOCOMPLEJO Y EXHIBE RESONANCIAS DE PLASMON LOCALIZADAS. LA CAPTURA DE UN INMUNOCOMPLEJO EN LA SUPERFICIE DEL SENSOR OPTOMECANICO TENDRA COMO EFECTO EL ACOPLAMIENTO ENTRE SI DE LOS MODOS DE LA MICROCAVIDAD OPTICA, LAS RESONANCIAS MECANICAS Y LAS RESONANCIAS DE PLASMON. EL RESULTADO ESPERADO ES LA OBTENCION DE SEÑALES MUY ESPECIFICAS PARA CADA BIOMARCADOR, UNA SENSIBILIDAD EXTREMA Y UN LIMITE DE DETECCION PROXIMO A LOS LIMITES FUNDAMENTALES. LOS DISPOSITIVOS SERAN ENSAMBLADOS EN CHIPS QUE COMPRENDERAN MATRICES BIDIMENSIONALES DE ENTRE 100 Y 1000 SENSORES CON CAPACIDAD PARA DETECTAR HASTA 100 PROTEINAS DIFERENTES A CONCENTRACIONES SUB-FEMTOMOLARES. LA TECNOLOGIA SERA PROBADA CON MUESTRAS DE SANGRE DE PACIENTES CON CANCER DE PULMON DE CELULAS NO PEQUEÑAS (NSCLC). ESTE TIPO DE CANCER REPRESENTA CASI EL 80% DE LOS CASOS DE CANCER DE PULMON Y EXHIBE UNA SUPERVIVENCIA MEDIA DE MENOS DE UN AÑO DESPUES DEL DIAGNOSTICO. EN PARTICULAR, SE BUSCARAN PROTEINAS BIOMARCADORAS QUE SE DERIVAN DE GENES DE FUSION, YA QUE ESTAS PROTEINAS SON FIRMAS INEQUIVOCAS DE LA APARICION Y EL DESARROLLO DE LA MAYORIA DE LOS CANCERES. LA DETECCION DE ESTAS PROTEINAS EN UN ANALISIS DE SANGRE CONTRIBUIRA A LA DETECCION DE ESTA ENFERMEDAD DESDE ETAPAS MUY TEMPRANAS CUANDO LAS TERAPIAS SON MUY EFICIENTES. (Spanish)
0 references
SOLID TUMORS SECRETE SPECIFIC PROTEINS TO THE BLOODSTREAM FROM THE ONSET OF THE DISEASE. THE DETECTION OF THESE PROTEINS WOULD ALLOW EARLY DETECTION OF CANCER AND WOULD BE A REAL REVOLUTION IN ITS TREATMENT. HOWEVER, THERE IS NOT YET A TECHNOLOGY CAPABLE OF DETERMINING THE PRESENCE OF THESE PROTEINS IN BLOOD PLASMA. THIS IS DUE TO THE INFIMA CONCENTRATIONS AT WHICH THEY ARE FOUND, AND BECAUSE THEY COEXIST WITH MORE THAN 10,000 DIFFERENT PROTEINS, SOME AT CONCENTRATIONS 12 ORDERS OF GREATER MAGNITUDE. THE PROPOSAL AIMS TO DEVELOP A TECHNOLOGY FOR THE IDENTIFICATION AND QUANTIFICATION IN A WIDE RANGE OF SPECIFIC TUMOR PROTEINS IN BLOOD SAMPLES. THE TECHNOLOGICAL BASIS OF THE PROPOSAL IS BASED ON EXPLOITING THE PHYSICAL PHENOMENA THAT EMERGE IN THE CONVERGENCE OF THE PHYSICS OF OPTIC CAVITIES, PLASMONICA AND NANOMECANICA. IN PARTICULAR, BIOMARKING PROTEINS SHALL BE SPECIFICALLY DETECTED BY CAPTURE AND DETECTION ANTIBODIES WHICH RECOGNISE TWO DIFFERENT EPITOPES (PARTICULARLY RECOGNISABLE PORTIONS). EACH PROTEIN WILL BECOME AN IMMUNOCOMPLEX WITH TWO ANTIBODIES. ONE OF THEM WILL BE ATTACHED TO A METAL NANOPARTICULA, WHILE THE OTHER WILL BE ANCHORED TO THE SURFACE OF AN OPTOMECANIC MICROTAMBOR SENSOR. THE FUNCTION OF THE NANOPARTICULA IS TWOFOLD: INCREASES THE MASS OF THE IMMUNOCOMPLEX AND EXHIBITS LOCALISED PLASMON RESONANCES. THE CAPTURE OF AN IMMUNOCOMPLEX ON THE SURFACE OF THE OPTOMECANICO SENSOR WILL HAVE AS AN EFFECT THE COUPLING BETWEEN THE MODES OF THE OPTIC MICROCAVITY, THE MECHANICAL RESONANCES AND THE PLASMON RESONANCES. THE EXPECTED RESULT IS THE OBTAINING OF VERY SPECIFIC SIGNALS FOR EACH BIOMARKER, AN EXTREME SENSITIVITY AND A LIMIT OF DETECTION NEXT TO THE FUNDAMENTAL LIMITS. THE DEVICES SHALL BE ASSEMBLED INTO CHIPS COMPRISING TWO-DIMENSIONAL ARRAYS OF BETWEEN 100 AND 1000 SENSORS CAPABLE OF DETECTING UP TO 100 DIFFERENT PROTEINS AT SUB-FEMTOMOLARES CONCENTRATIONS. TECHNOLOGY WILL BE TESTED ON BLOOD SAMPLES FROM PATIENTS WITH NON-SMALL CELL PULMON CANCER (NSCLC). THIS TYPE OF CANCER ACCOUNTS FOR ALMOST 80 % OF LUNG CANCER CASES AND EXHIBITS AN AVERAGE SURVIVAL OF LESS THAN A YEAR AFTER DIAGNOSIS. IN PARTICULAR, BIOMARKING PROTEINS DERIVED FROM FUSION GENES WILL BE SOUGHT, AS THESE PROTEINS ARE INEQUITABLE SIGNATURES OF THE APPEARANCE AND DEVELOPMENT OF MOST CANCERS. THE DETECTION OF THESE PROTEINS IN A BLOOD ANALYSIS WILL CONTRIBUTE TO THE DETECTION OF THIS DISEASE FROM VERY EARLY STAGES WHEN THERAPIES ARE VERY EFFICIENT. (English)
13 October 2021
0 references
Tres Cantos
0 references
Identifiers
MAT2015-66904-R
0 references